DPEN Compute Project®

Connect. Collaborate. Accelerate.

Specifying Holdover for OCP-TAP Oscillator Classes in Data Centers

Gary Giust, PhD OCP-TAP Oscillator Workstream, Lead Sr. Mgr Technical Marketing, SiTime Nazar Tshchynskyy Sr. Mgr Customer Engineering, SiTime

Jeff Gao Sr. Dir Marketing, SiTime

ITSF, Brighton UK – November 3, 2021

Agenda

- 1. Motivation
- 2. Test parameters use case dependent
- 3. Test method use case independent
- 4. Call to action

OCP-TAP Simplifying Oscillator Selection

Project

Problem

- Difficult to understand holdover performance from oscillator datasheet
- Difficult to select oscillator for a use case

Goal

• Enable transparent, apples-to-apples comparison of oscillator holdover

Proposed Solution

- Specify max time error at holdover time, τ_h
- Specify a holdover test methodology

Connect. Collaborate. Accelerate.

OCP-TAP Specifies Test Parameters Use Case Dependent

- Holdover time, τ_h
- Thermal profile target starting temperature, ramp rate, soak time
- Operating ambient-temperature range
- Ambient temperature to measure aging
- Ambient temperature to measure frequency versus time trend
- Acceptable probability of error, P_E , required by system
- Training time before entering holdover, τ_{Training}
- Sample-unit population, N, and distribution
 - For example: 10 random units from each of 3 lots, each with a different process and assembly
- Trial population, M, to capture random variations per unit
- Whether the system compensates for aging

Connect. Collaborate. Accelerate.

OCP-TAP Specifies Test Method Use Case Independent

Measure

- Frequency stability over the specified operating ambient temperature range
- Frequency versus time at the specified ambient temperature

Compute

- Extract daily aging, thermal drift and wander from measured data
- Max time error $E_{max}(\tau_h)$ up to holdover time τ_h and derived from Gaussian distributions for
 - Aging $m_a(\tau_h), \sigma_a(\tau_h)$
 - Thermal drift $m_T(\tau_h)$, $\sigma_T(\tau_h)$
 - Wander $m_w(\tau_h)$, $\sigma_w(\tau_h)$

Report

- $E_{max}(\tau_h)$
- Vendor-specific test conditions and restrictions needed to reproduce results Connect. Collaborate. Accelerate.

444 444 477 707 707 707 707 707	Compute Max Time Error					
ompute Project®	$E_{max}(\tau_h) = m_{max}(\tau_h) + $	$Q_x(P_E)$	$\sigma_{max}(\tau_h)$	$ m_{max} \gg 0$	$m_{max} \cong 0$	TIME APPLIANCES
	Q Pe er	Q converts RMS to Peak for a specified error rate, P _E		1-Sided x = 1 m_{max} P_E $0 \ Q_1(P_E)/\sigma$	2-Sided x = 2 P_E $2Q_2(P_E)/\sigma$	
N-VA			1-P _E	$\boldsymbol{Q}_{1}(\boldsymbol{P}_{E})/\sigma(\tau_{h})$	$\boldsymbol{Q_2}(\boldsymbol{P}_E)/\sigma(\tau_h)$	
nterpretation All units shipped will not exceed $E_{max}(\tau_h)$ up to holdover time τ_h with at most probability of error P _E			0.682689	0.475	1.000	
			0.954499	1.690	2.000	
			0.997300	2.782	3.000	
			0.999002	3.091	3.291	
			0.999900	3.720	3.891	
			0.999937	3.833	4.000	
		0.9999990	4.754	4.892		
		0.9999994	4.865	5.000		

D

OCP-TAP Welcomes Your Feedback

- Participate in weekly OCP-TAP Oscillator Workstream

 Contact Gary Giust (email in Wiki page below)
 Nov 17, OCP-TAP Main Meeting will review Oscillator Workstream work
- View recordings of Oscillator Workstream meetings on Wiki page
 <u>https://www.opencompute.org/wiki/Time_Appliances_Project</u>
- Subscribe to OCP-TAP mailing list
 <u>https://ocp-all.groups.io/g/OCP-TAP</u>
- "Open Time Server" Github page
 - <u>https://github.com/opencomputeproject/Time-Appliance-</u> <u>Project/tree/master/Open-Time-Server</u>

Thank you!

Connect. Collaborate. Accelerate.